Soil, Cities and Sustainability

Roisin O'Riordan, Lancaster Environment Centre & Pentland Centre for Sustainability in Business
Supervisors: Dr Jess Davies, Dr Carly Stevens, Prof John Quinton (Lancaster Environment Centre), Dr Christopher Boyko (Imagination Lancaster)

Introduction

Carbon Storage

Vegetation in greenspaces allows carbon to be sequestered, helping to mitigate climate change.

Access to

Greenspace
Access for all to
green and open
space is important
for physical and
mental health

Flood Mitigation

Soil and the habitats

greater biodiversity

it provides allow

Greenspaces allow water to infiltrate into the soil, improving water storage and mitigating flooding

Soil organic matter as a proxy

Soil organic matter plays an important role in **soil function** and improves **soil properties**¹ including:

- soil structure and aggregation
- biodiversity
- carbon storage
- water holding capacity
- cation exchange capacity and nutrient provision

Soil organic matter is measured in terms of **soil organic** carbon (SOC).

SOC in cities is important for both

multiple ecosystem services & carbon storage².

To date, few studies have considered SOC as a proxy for multiple ecosystem services in cities.

SOC stores in urban soils may have been **underestimated** in national inventories³ – little data is available on urban soil carbon storage².

Urban soil and the SDGs

Recognising the benefits urban soil provides can help meet the targets for goal 11: Sustainable Cities & Communities.

Research questions

Urban soil research has focused on **park or garden soil**. Greenspace and garden soils make up a surprisingly large area of cities. However, there is a lack of research on soil under 'sealed' impermeable surfaces such as roads or pavements. Only two studies have considered the carbon in soil under sealed surfaces^{3,4}.

This project aims to increase our understanding into **organic carbon and nutrients** in soils under **sealed surfaces and unsealed soils** in urban areas. To do this, data is being collected to answer the following research questions:

Sealed & unsealed soil
Does unsealed soil have
more organic carbon and
nutrients than sealed soil?

Connectivity

Does the network of unsealed soil facilitate movement of water and nutrients into sealed soil?

How does sealing affect soil?

- Reduced water infiltration change to wetting cycles
- No vegetation reduced organic matter input
- Topsoil removal during construction
- Ash included in road construction
- Temperature changes

Disturbance

Does soil that was disturbed less recently have more organic carbon and nutrients?

Sampling strategy

The sampling strategy aims to collect soils across Manchester from:

- sealed soils roadworks for water and gas pipes, construction sites
- unsealed soils from parks, amenity greenspaces, transport green spaces and public open spaces.

Sampling is designed to collect soil from a range of spatial contexts: inner city, suburban, amenity spaces etc.

Sample analysis

Total N, C & P

CN ratioTotal P

Plant available Total C & inorganic CAmmonia & nitrate

Labile C Physical fractionation

Loss on ignition

Bulk density

• pH

Future plans

Complete sample collection and data analysis

Investigate the dynamics of sealed soils - transect or chronosequence study (effects of disturbance over time)

- Duration of soil sealing and its influence on soil organic carbon
- The effects of sealing over time on nutrients

Consider modelling urban soil carbon

• Use process based soil model, N14CP, in an urban context

Keywords

- Soil
- Urban Soil
- Cities
- Ecosystem Services
- Sustainable Development Goals
- Soil Organic Matter
- Soil Organic Carbon
- GreenspaceSoil spaling
- Soil sealing

References: ¹ Bot and Benites (2005) FAO; ² Lorenz and Lal (2015) Carbon Management 6 35-50; ³ Edmondson et al (2012) Scientific Reports 2 963; ⁴ Raciti et al (2012) Environmental Pollution 164 248-251 Infographic: Created by Freepik. Map greenspace data from OS MasterMap Greenspace.

